RSS Выход Мой профиль
 
Атомная энергетика - что дальше?


Атомная энергетика — без эмоций?


На вопросы журналиста М. Курячей отвечает член-корреспондент АН СССР А. А. Саркисов

Ашот Аракелович, долгое время о научно-техническом прогрессе говорили, «не замечая» негативных явлений. Показательна ситуация с атомной энергетикой. Много лет обществу настойчиво внушалась мысль, что без нее дальнейшее развитие цивилизации невозможно. После чернобыльской аварии в общественном мнении наметился резкий крен в обратную сторону. С момента катастрофы прошло более двух лет. Видимо, сегодня уже можно трезво оценить место атомной энергетики в нашей жизни, ее перспективы? Хотелось бы получить объективную оценку этого направления научно-технического прогресса.
Всякие выводы и заключения, касающиеся перспектив того или иного направления научно-технического прогресса, должны опираться не столько на эмоции, сколько на строгий технико-экономи-ческий анализ. Однако сейчас и этого уже недостаточно. Чтобы формировать энергетическую политику, нужно учитывать еще и экологические, социальные факторы. Необходимо принимать в расчет даже нравственные соображения.
Подобные мысли в наши дни не выглядят неожиданными. Но к сожалению, сегодня еще нельзя утверждать, что все принципиальные вопросы решаются именно в таком ключе...
И тем не менее некая ревизия наших представлений о путях развития топливно-энергетического комплекса наблюдается. Насколько глубокой она будет, как сильно изменит она уже принятую нами стратегию, сказать пока трудно. Но то' что изменения неизбежны (они уже существуют), это сомнений не вызывает.

Сегодня около 15 процентов энергии, вырабатываемой на нашей планете, приходится на атомные электростанции. Но, как известно, средний показатель дает лишь общее представление о сложившейся в мире ситуации. Если же проанализировать положение в отдельных странах, возникнет картина весьма пестрая. Есть государства, в которых производство энергии на АЭС выражается очень значи-: тоьными цифрами: например, во Франции оно достигает примерно 70% общей выработки. И никаких изменений в сторону уменьшения там не предвидится. Наоборот, население очень трезво оценивает вопросы, связанные с развитием атомной энергетики, справедливо рассматривая свои АЭС как стимулятор хозяйственной жизни.
Но вместе с тем существуют государства, принявшие решение о полном прекращении строительства новых АЭС: Швеция, Италия.
Кто прав? Однозначного ответа, по-моему, здесь вообще нет. Показательна в этом отношении позиция США. Прекратив строительство новых АЭС, там широко развернули научно-исследовательские и конструкторские работы в области атомной энергетики. Таким образом, создается хороший задел, чтобы в нужный момент активно приступить к развитию атомной энергетики на качественно ином уровне.
Если говорить о позиции США, надо вспомнить, наверно, и такой факт. В 1979 году на атомной электростанции «Три Майл Айленд» (Пенсильвания) произошли события, расцененные тогда специалистами как «наиболее серьезная авария, когда-либо имевшая место в ядерной энергетике». Но хотелось бы обратить внимание на то, что уже в 1978 году, то есть до аварии, в США не было сделано ни одного нового заказа на строительство АЭС. Всего же с 1972 по 1983 год было прекращено строительство или были ликвидированы заказы на сооружение новых АЭС общей мощностью 110 Г Вт.
Действительно, в США еще до аварии в Пенсильвании выдвинутые гарантии безопасности подверглись серьезному обсуждению. Особую озабоченность вызывали системы аварийного охлаждения активной зоны (САОЗ), поскольку на работающих легководных реак-


Рис. I. Выработка электроэнергии нл АЭС в разных странах в 1985 г.

торах они ни разу не испытывались по полной схеме. Поведение таких систем в экстремальной ситуации описывалось на основе методов математического моделирования. А они были далеки от совершенства.
Особенно обострились дебаты к началу 70-х годов. Достаточно сказать, что Комиссия по атомной энергии США (АКС) рассматривала эти вопросы с января 1972 по июль 1973 года, правда, с перерывами. И все же к моменту аварии на «Три Майл Айленд» , испытания САОЗ по полной схеме так и не провели.
Согласен, отношение к атомной энергетике в мире начало меняться еще до крупных аварий. Пока она занимала скромное место в мировом топливно-энергетическом комплексе, целый ряд обстоятельств, связанных с ее развитием, оставался незамеченным или казался не столь существенным. Когда же вклад атомной энергетики стал довольно весомым, выявились некоторые особенности, заставляющие более трезво.. подойти к ее перспективам. Но и тогда выбранный путь в целом сомнений не вызывал.
Первый заметный спад темпов развития атомной энергетики был все-таки связан с аварией в Пенсильвании. Второй, затронувший уже энергетику всего мира, начался после трагедии в Чернобыле.
Иными словами, характерные для атомной энергетики проблемы безопасности обострились при расширении ее масштабов? Коли-нество как бы перешло в качество?
Я бы сказал несколько иначе. Не*будем забывать об объективных причинах. В частности о том, что выбранный путь логически вытекал из той энергетической ситуации, которая сложилась в последние десятилетия: спад в угольной промышленности, нефтяной кризис, они как бы наслоились друг на друга. И потому потребовались качественно новые энергетические источники. Ими и стали атомные электростанции.
Путь, связанный с развитием атомной энергетики, поначалу выглядел вполне естественным и, пожалуй, неизбежным. Но здесь произошел своеобразный отрыв от тылов. Уже в 1975 году в мире действовало 130 атомных электростанций. Традиционным же электростанциям потребовалось примерно сто лет, чтобы выйти на подобный уровень инженерных решений и эксплуатационной надежности. Накопленный опыт эксплуатации АЭС оказался несоизмеримо мал с масштабами развития новой отрасли. Между тем вопросы безопасности требовали более тщательной проработки. В итоге...
Что произошло в Чернобыле? Цепь случайных событий? Не совсем... Почти невероятное наслоение неверных эксплуатационных решений, усугубленное некоторыми конструктивными недостатками, привело к разгону цепного процесса, расплавлению активной зоны и к взрыву. Об этом так много пйсалось, что нет смысла продолжать.
Ничего принципиально нового в наши знания авария на АЭС не внесла. С точки зрения физики и техники здесь все понятно. С точки, зрения гражданина — видимо, нет. И оправдывать случившееся безнравственно. На мой взгляд, это тот самый случай, когда неправильные решения в области техники приводят к огромным по масштабам нежелательным социальным последствиям.
Около 20 лет назад писатель И. Ефремов заметил: «Физика, например, из самой передовой все больше превращается в консервативную и абстрактную дисциплину. Ей следуют и некоторые другие отрасли знания. Между тем репигия в плане всего человечества отошла на задний план, а на ней прежде покоилась общественная мораль. Наука, заменившая религию, особенно в социалистических странах, уделила мало внимания разработке научно обоснованной системы морали и общественного поведения человека в обществе, отдавая почти все силы погоне за открытиями вообще. Но познание «вообще» антигуманистично и аморально, поэтому все резне обозначается расхождение между насущными потребностями человека и ходом развития науки и техники». Согласны ли вы с этими словами? •
Подобные мысли высказывали не только И. Ефремов... К сожалению, во многом они оказались верными. И потому сегодня на плечи ученых ложиуся все большая ответственность. Особенно на тех, кто занимается разработкой новых проектов в области атомной энергетики. Новые ошибки здесь недопустимы.
Однако подобные утверждения останутся пустым' лозунгом, если они не будут подкреплены конкретными действиями. Я специализируюсь в области точных наук, а потому оцениваю ситуацию прежде всего с технических позиций.
Мы знаем, причиной возникновения аварии в Чернобыле были ошибки обслуживающего персонала. Однако целиком и полностью относить случившееся на счет преступно безграмотных действий было бы неправильно.
Разумеется, речь не о том, чтобы оправдать персонал АЭС. Вопрос стоит иначе. И я считаю его принципиальным. Атомная электростанция — слишком ответственный объект. А потому ни грубейшие ошибки оператора, ни наложение друг на друга различных неисправностей, пусть и самых маловероятных, ни даже умышленное извлечение органов управления из активной зоны; ни возникающие при этом аварийные ситуации не должны приводить к расплавлению активной зоны. «Запрет» на это необходимо заложить в физические, химические и конструктивные характеристики реактора. Он должен быть сконструирован так, чтобы обладать «внутренней» безопасностью. Только тогда нам удастся избежать новых трагедий.
Конечно, промышленный выпуск подобного оборудования — дело непростое, дорогостоящее и требует немало времени. Но пути решения э1*ой технической задачи достаточно ясны.' И уже с 1995 года планируется оснащение всех строящихся АЭС реакторами нового поколения.
Но до 1995 года еще шесть лет. А какие меры по повышению безопасности приняты сегодня?
Программа действий, связанных с безопасностью атомной энергетики, намечена очень широкая. Многое'из нее уже сделано.
Во-первых, по системе управления: здесь имелись особенности, которые при ошибках персонала могли «провоцировать» аварию. Теперь они устранены.
Во-вторых, по конструкции самого реактора ~ в нее тоже внесены изменения, заметно повышающие безопасность эксплуатации.
В-третьих, по средствам технической диагностики, помогающим следить за состоянием металла в ответственных деталях: трубопроводах, корпусе и т. д. Сегодня идет довольно широкое внедрение их в практику. И изменения, чреватые аварийными последствиями, удается выявить на ранних стадиях развития.
Кроме того, разрабатываются автоматизированные системы контроля и анализа параметров АЭС. Такие системы выступят в роли экспертов-советчиков для обслуживающего персонала, помогая принять правильное решение в нестандартных ситуациях.
Наконец, многое делается для совершенствования систем локализации аварий. Прежде всего внимание уделяется пассивным системам охлаждения активной зоны. Есть ли энергоснабжение или нет, они, если нужно, вступают в работу автоматически и отводят тепло из активной зоны реактора.
В дополнение к этому улучшена подготовка обслуживающего персонала, создаются специальные тренажеры, начинает внедряться профессиональный отбор инженерно-технических работников для АЭС. Короче, приняты все меры, чтобы свести к минимуму вероятность возможных аварий.
Программа очень большая, требует значительных средств на свое осуществление и резко увеличивает стоимость АЭС. Но тенденция к удорожанию повсеместна, она наблюдается во всем мире.
Наверное, неправильно сводить проблему к безопасности только атомных электростанций. В противном случае «за кадром» остается слишком многое. Добыча урана, процессы обогащения, производство тепловыделяющих элементов, захоронение радиоактивных отходов — тоже элементы атомной энергетики. Об этих ее составляющих почти не говорят, но проблемы, связанные с ними, существуют. Как они решаются?
Давайте подробно рассмотрим какой-нибудь один вопрос, например, захоронение радиоактивных отходов. Насколько мне известно, эта проблема вызывает наиболее пристальный интерес..
Хочу внести ясность: отходы образуются не только на АЭС. Их дает вся атомная промышленность: и добыча, и переработка сырья, и изготовление рабочих каналов (тепловыделяющих элементов), и применение радиоактивных изотопов в медицине, биологии, промышленности.
Правда, у них есть одна особенность, которую можно расценивать как преимущество.-В силу высокой концентрированности энергии в ядерном топливе, количество образуемых отходов, по сравнению с другими отраслями, сравнительно невелико. Но все равно — грязь есть грязь, и проблем здесь довольно много.

Сама технология выделения отходов, их концентрирование, прес-' сование, заключение в цементные, битумные или стеклянные блоки — это целая отрасльатомной промышленности.
Еще более сложной и дорогостоящей является технология сжигания, позволяющая уменьшить объем отходов в 20—100 раз. Отходящие дымовые газы очищаются методами адсорбции и фильтрации, а зола, загрязненная радионуклидами, подвергается цементированию, битумированию или остекловыванию.
Эти отрасли развиваются параллельно с ядерной энергетикой и «забирают» у нее значительную долю капитальных вложений. И чем дальше входим мы в атомный век, т^м больше будет
отходов:
Но главный вклад вносят, конечно, атомные _ электростанции. Особое место здес^занимают отработавшие рабочие .каналы, которые содержат высокоактивные осколки деления, а также недовыго-ревший уран и накопившийся плутоний. Они представляют собой наиболее активный тип отходов и наиболее специфичный.-А потому • требуют к себе особого отношения.
При современной ситуации на атомном рынке (уран сейчас стоит относительно дешево) извлекать полезные компоненты из отработавших рабочих каналов не имеет смысла. Это и очень сложно технически, и дорого, и опасно. А потому сегодня тепловыделяющие элементы подвергают захоронению, чаще всего прямо на территории АЭС. Хранят их в водной среде на достаточно большом удалении друг от друга. Таким образом, достигаются две цели. Во-первых>, отводится тепло, выделяющееся при продолжающемся радиоактивном распаде остатков «горючего». Во-вторых, исключается возникновение критического ансамбля,*.способного привести к взрыву.
Подобные хранилища представляют собой огромные сооружения. И число их-растет. Наступает момент, когда накопившиеся ofxo-ды надо куДа-то девать.
Наиболее распространенной является технология прессования. Рабочий канал освобождают от всех конструктивных элементов, не имеющих столь высокой активности, как ядерное горючее: от кожухов, крышек, колпаков, дистанционирующих решеток и прочего. Остаются только тепловыделяющие элементы. Чтобы они занимали меньше места, их можно, например^ скрутить в жгут. Затем такой жгут помещается в контейнер, заливается свинцом, закрывается сверху крышкой и заваривается. Получается некая герметичная капсула, предназначенная почти для вечного хранения.
Делается она из меди. Этот металл очень слабо подвержен коррозии, а потому контейнер может простоять без изменений сотни и даже тысячи лет. Когда же в металле начнут возникать свищи и герметичность нарушатся, содержимое капсулы будет уже не опасно. За столь долгий срок радиоактивность отходов успеет снизиться до* приемлемого уровня.
Но сразу возникают k другие проблемы. Где хранить такие контейнеры?


Рис. 2. Один из способов захоронения радиоактивных отходов: 1 — здание вентиляционной службы; 2, 3, 4 —помещения для подъемных механизмов; 4 - склад; 5 — здание для приемки отходов; 6 — шахтный ствол для отходов; 7 — соль; 8 — место хранения Отходов; 9 — вентиляционный туннель^ 10 —дно шахты; II—шахтный ствол для персонала..
Да, это тоже достаточно сложный вопрос. Но решаемый. На первых порах подходящим местом казалось дно океана. В некоторых странах успеЛи забросить туда довольно много контейнеров. Но теперь такое решение проблемы считают неперспективным.
Среди разных способов размещения радиоактивных отходов, например, на антарктическом скальном грунте или в районах гра: нитных формаций, отдается предпочтение соляным шахтам. Причина такого выбора довольно проста. Известно, что соль хорошо растворима в воде. А потому, столкнувшись с большими соляными залежами, можно с уверенностью сказать: они очень долгое время (сотни лет) не контактировали с водой. А значит, этого не должно произойти и в будущем. Разумеется, я упрощенно излагаю идею. И подобные выводы подкреплены серьезными исследованиями.
Кроме того, соль хороша еще в другом отношении. Теплота, выделяемая радиоактивными отходами, вызывает пластическую.текучесть соли. В результате она оплавит контейнер. А это — до пол: нительная защита.
Но конечно, выбором места проблема не ограничивается. Ведь речь идет не о вульгарном захоронении, а об инженерном сооружении. В .нем необходимы системы контроля, вентиляции, подъемные механизмы и т. д. > л
. Однако технические пути решения задачи достаточно проработаны и ясны. То же самое можно сказать в отношении других составляющих ядерного энергетического цикла. Хотя, безусловно, это не означает, что все трудности уже преодолены.
Ашот Аракелович, а не слишком ли дорого обходится решение подобных проблем? Вы упомянули о том, что захоронение от-ходов требует немалых капитальных вложений. Но и другие мероприятия тоже не*дешевы: например, вывод из эксплуатации отслуживших ядерных реакторов. Здесь, как известно, существуют три варианта, и трудно сказать, какой дороже — консервация, захоронение или демонтаж? Как сообщают, единственный в истории США демонтаж реактора превзошел по стоимости само строительство: 6,9 миллиона долларов против 6 миллионов. Речь о реакторе Элк Ривер.
Да, это известный случай. Чтобы свести к минимуму облучение рабочих, ведущих демонтаж, корпус реактора разрезали под водой с помощью плазменной горелки. Однако происходило это двадцать лет назад, и Мощность установки на Элк Ривер была в десятки раз* меньше, чем у современных реакторов. Вряд ли опыт подобной работы можно считать значительным и экстраполировать его на сегодняшний день.
Разумеется, мое замечание следует воспринимать как уточнение. И сказанное не означает никакого отрицания; думаю, расходы в данной области сократить не удастся. Скорее наоборот;, они будут расти. Но иного пути нет...
Строго говоря, абсолютно безопасных источников энергии не существует: при неправильном обращении уголь самовоспламеняется, водород взрывается. Даже солнечные электростанции не безупречны в этом отношении.
Специалистам памятен взрыв, случившийся в 1986 году на сол-•нечной электростанции в испанском городе Табернас. Пожар охватил не только солнечные батареи и пульт управления, но проник и дальше. Когда огонь добр-ался до блоков, где использовался натрий, бедствие приняло особенно страшный характер. Ведь этот металл на редкость активен: достаточно небольшого нагрева, и при контакте с воздухом он- мгновенно воспламеняется, а при соприкосновении с водой взрывается. Огонь бушевал много часов подряд, а пожарные ничего не могли сделать...
Разумеется, об этом случае я вспомнил не для того, чтобы опорочить солнечную энергетику. Но согласитесь, подобные примеры убедительно доказывают, что развитие научно-технического прогресса связано с; определенным риском, зачастую труднопредсказуемым. А потому любое техническое новшество должно предусматривать системы, позволяющие безопасно его эксплуатировать, демонтировать и т. п. А значит, какие-то дополнительные расходы здесь неизбежны.
Экономить на безопасности не только рискованно, но и безнравственно.
И здесь вот на что хотелось бы обратить внимание. Как ни странно, но до сих пор не все еще понимают, что безопасность в атомной энергетике и, скажем, на железнодорожном транспорте — это совершенно разные понятия. Характер потерь — даже при «одинаковом количестве жертв явных — при аварии на АЭС качественно иной. У нас пока мало изучены такие вопросы, как влияние малых доз радиации на живое. Атмосфера, грунт, вода, пищевые цепочки — здесь возникают оч,ень сложные взаимодействия. Они могут иметь отдаленные ^последствия, прежде всего генетические. Об этом нельзя забывать.
То, что подобные вопросы требуют тщательных исследований, само собой разумеется. Но данные, обстоятельства должны обязатеяьно учитываться при проектировании АЭС, при нормировании

их безопасности и всех составляющих ядерного топливно-энерге тического цикла.
Но в таком случае не будет ли дешевле отказаться от атомной энергетики совсем? Или хотя^бы последовать примеру США: прекратить 'строительство новых станций, провести необходимые исдледова-ния, а затем уже делать следующий шаг?
Некоторое замедление темпов развития атомной энергетики у нас в стране предусмотрено. Но здесь надо учитывать сложившуюся ситуацию.
Известно, что европейская часть СССР — наиболее энергопотребляющий регион нашей территории. Вместе с Уралом он «Забирает» 80% всех топливно-энергетических ресурсов. В то же время свыше 90% энергетических запасов находится на востоке. В результате уже сегодня использование гидроресурсов на Европейской равнине вдвое выше, чем в других регионах. А за донбасским углем приходится идти на глубину свыше километра.
Иными словами, здесь наши возможности приближаются к определенному пределу. И наращивание мощностей атомной энергетики позволило снизить потребление органического топлива в европейской части страны. Хотя, конечно, до конца проблему не решило: в перевозках с .востока на запад доля топлива составляет примерно 40%. И чтобы отказаться от атомной энергетики совсем, надо предложить взамен другие конкурентоспособные источники энергии.
Сейчас вновь большие надежды возлагают на уголь. Разведанные запасы этого топлива настолько огромны, что даже при современных не всегда совершенных методах добычи его должно хватить на многие столетия. Но сразу же возникает ряд проблем.
Первая — транспортировка. К сожалению, месторождения у нас расположены на востоке, а совсем не там, где испытывается дефицит энергии. Кроме того, они отличаются довольно низкой калорийностью угля. Значит, перевозка не только обострит транспортную проблему, но и просто экономически нецелесообразна.

Рис. 3. Оценка мировых извлекаемых запасов угля

Если же вырабатывать электроэнергию на местах добычи, то надо делать сверхдальние линии электропередач. А это требует и времени, и большиХч капитальных сложений. Причем надо учесть, что при передаче электроэнергии на большие расстояния неизбежны ее огромные потери: до 10% в магистральных линиях и еще около 40% в распределительных сетях.
Но главное препятствие состоит даже не в перечисленных трудностях. Если будем развивать ТЭС на yгле в том виде, как они существуют, то неминуема экологическая катастрофа. Современные угольные электростанции сжигают в течение года 2 • 10 т угля на 1 ГВт (эл) мощности. При этом образуется примерно 4 • 10 т золы, из которых 8 • 103 т выбрасывается в атмосферу. Особенно вредны выбросы сернистых газов, составляющие тысячи тонн на 1 ГВт (эл). Проливаясь на землю в виде кйслотных дождей, они губят растительность, почву, водоемы и прежде всего здоровье людей.
Достижение, же требований мировых перспективных стандартов (сокращение выбросов золы до 0,05, окислов серы до 0,2—0,3 и окислов азота до 0,15—0,2 г/м3) в настоящее время связано с настолько высокими капиталовложениями, что повсеместное применение таких методов экономически совершенно неприемлемо. Экономически приемлемые «чистые» промышленные технологии использования угля мировой практике не известны. Правда, в этом направлении ведутся исследования. Перспективными, в частности, представляются разработки Энергетического института им. Г. М. Кржижановского. Завершение этих работ и их практическая реализация задерживаются пока из-за недостаточных ассигнований.
И все же с учетом имеющихся природных запасов в обозримрй перспективе лидерство, видимо, будет принадлежать атомным и угольным электростанциям. А соотношение удельных весов этих основных конкурирующих типов энергетики в топливно-энергетическом комплексе будет определяться одним: насколько успешно удастся преодолеть, свойственные им внутренние противоречия.
Но может' быть, тогда перспективней другой путь развития энергетики? Энергосбережение. Как известно, пока коэффициент полезного использования энергоресурсов составляет около 40%. Явно немного. Не целесообразно ли повысить внимание науки к этому вопросу?
Ответ очевиден. Да, Энергоемкость нашего национального продукта намного выше, чем в -Западной Европе, в США или в Японии. Да,, энергия расходуется у нас расточительно. Да, энергосбережение фактически равносильно получению дополнительной энергии. Причем в Советском Союзе резервы колоссальны: счет идет, на миллионы тонн условного топлива.
И тем не менее подобные утверждения не означают, что в нашей стране энергосбережение можно рассматривать как реальный «источник» энергии уже сегодня. Почему? В первую очередь потому, что для осуществления такой политики нет, я полагаю, экономического стимула.

Именно поэтому изделия нашего машиностроения, например, в полтора-два раза тяжелее аналогичных зарубежных образцов. (Не будем забывать, что энергозатраты на изготовление изделия напрямую связаны с его массой). Предприятие даже заинтересовано расходовать больше энергии, ресурсов.
Экономика, как правило, носит затратный характер: чем больше потрачено, тем выше себестоимость продукции, а значит, ее цена и с нею прибыль. Пока мы не избавимся от затратной эконо-мики; все наши благие намерения останутся лишь намерениями.
Во-вторых, нельзя обойти вниманием и технологическую незаинтересованность предприятий в экономии ресурсов. Не буду приводить набившие оскому примеры с непрерывной разливкой стали или с сухим способом производства цемента. Они, как и многие другие, всем известны. Но известно также, что это — энергосберегающие технологии. Технологии, которые не нашли должного применения в нашей промышленности. Отчего? Прежде всего оттого, что не заинтересованы соответствующие ведомства. При любой, даже заведомо убыточной технологии свою долю, от энергетического «пирога» они получат. В других развитых странах такого нет.
Мне могут возразить, что в Японии; допустим, наряду с использованием совершенных технологий применяют и другие методы. Например, всю алюминиевую промышленность как наиболее энергоемкую отрасль вынесли ^а пределы страны. И алюминий закупают за границей.
Разумеется, для нас такой путь неприемлем. Но вместе с тем 1 в Японии составлены и щедро финансируются долгосрочные программы, в которых значительное место уделено перспективным исследованиям в области энергосбережения. К сожалению, у нас в стране • пока даже нет дальновидной и хорошо обоснованной комплексной программы энергосбережения. Ее разработка будет завершена лишь в 1989 году. Единственное же специализированное научное учреждение — Всесоюзный проектно-конструкторский и технологический институт ресурсосбережения Госснаба СССР — нуждается в значительном усилении. Необходимо создание соответствующих ^научных подразделений во- всех отраслях народного хозяйства.
Я, конечно, далек от мысли, что открытие соответствующего института сразу решает все проблемы. Но .согласитесь, сложившаяся ситуация четко отражает отношение к энергоснабжению. Им у. нас занимаются все, а значит, никто.
Получается, что «успешное» развитие атомной энергетики велось за счет своеобразного подавления конкурентов. Но сейчас, после Чернобыля, хоть что-то изменилось?
Мне трудно ответить... В последнее время в нашей стране появились группы, хотя и не называющие себя зелеными, но близкие к ним по своим целям, по той политике, которую они защищают. Конечно, в их деятельности есть много эмоционального, порой декларируются необоснованные суждения. И они встречают со стороны ведомств высокомерное и, я бы сказал, пренебрежительное отношение. Но ведь эти люди хотят сберечь- нашу природу, думают о
будущем нашей страны. Неужели подобные стремления не заслуживают уважения? Да и нет у ведомств особых оснований относиться свысока к предложениям таких групп- Нельзя забывать, в их составе немало спейиалистов высокой квалификации: физиков, биологов, математиков, химиков, инженеров. Наверное, разумнее было бы прислушаться к ряду их соображений и принять в расчет.
Видимо, это справедливо и в отношении альтернативных источников энергии, за внимание к которым тоже выступают в основном ученые, а не чиновники? Проблема «чистой» энергетики значительно многогранней, чем представлялось совсем недавно. Далеко не исчерпаны возможности гидроресурсов (малые ГЭС). Явно недооцениваются перспективы солнечной энергетики, особенно последние достижения в области физики твердого тела. Так, в Физико-техническом институте им. А. Ф. Иоффе АН СССР созданы высокоэффективные фотоэлементы, позволяющие преобразовывать солнечную энергию в электрическую с КПД 25—27%. Последние исследования показали, что этот показатель можно поднять до 40—50%. В США, Японии и других развитых /странах подобным исЬледо-ваниям уделяют большое внимание..., Другой пример — водородная энергетика. Здесь перспективы могут быть самые неожиданные, потому что есть примеры открытия природных месторождений водорода. А получив «дешевый» водород, человечество сможет решить многие нынешние энергетические и экологические< проблемы... Оригинальны химические методы преобразования солнечной энергии, например моделирование природного фотосинтеза. Возникает вопрос: достаточно ли внимания уделяется .данным направлениям в нашей стране? И если нет, то можно ли в этой ситуации выявить настоящего лидера в такой сложной области, как энергетика?
К сожалению, эти вопросы не в моей компетенции. Я могу высказать лишь собственное мнение. У нас, на мой взгляд, сложилась довольно ортодоксальная точка зрения, будто альтернативные источники энергии в обозрймом будущем заметного влияния, на энергетический баланс не окажут. И отсюда такое, я бы сказал, незначительное -внимание к работам в этой области.
Конечно, технический уровень тех же фотопреобразователей не отвечает пока нашим экономическим стандартам. Но разве можно оперировать будничными понятиями, оценивая новое научное направление? И я полностью солидарен с академиком Ж. И. Алферовым в отношении возможностей соллечной энергетики. Это — щедрый, экологически чистый и весьма перспективный источник. Р&зум-уее было бы не пренебрегать им, а .делать в:се, чтобы приблизить тот день, когда он .займет достойное место в нашей жизни.
Не буду приводить цифры. И без них ясно, что ни солнцем, ни ветром, ни геотермальными ресурсами мы серьезно не занимались. Я не хочу переоценивать возможности альтернативных источников: в ближайшие десятилетия равноправного соревнования между традиционной энергетикой й, скажем, солнечной не предвидится. Но это не значит, что подобные исследования надо держать на «голодном пайке».

Нельзя бюрократическими методами определить перспективность науки, обильно финансируя одно направление за счет других. Конечно, приоритетные направления обязательны. Но выбор приоритетов должен происходить в свободной научной дискуссии, а не келейно, в тиши кабинетов.
Вот, скажем, мы затрачиваем огромные средства на термоядерную энергетику. Но .особой уверенности в том, что она окажет какое-to реальное влияние на Энергетическую ситуацию в ближайшее время, тоже пока нет.
Да и не следует подавать проблему термояда слишком упрощенно и забывать, что этот вид энергетики тоже связан с радиоактивностью. Специалисты прекрасно знают: наиболее перспективные схемы термоядерных реакторов предусматривают наработку плутония в бланкете, который потом должен выделяться на химических комбинатах, затем опять использоваться в атомных реакторах и т. д. Иными словами, термоядерная энергетика не исключит «классическую» атомную-, а будет к ней своеобразным дополнением. Она просто вовлечет в оборот новые, практически неисчерпаемые- источники первичной энергии. Но вместе с тем это не такая уж дешевая, чистая и простая вещь.
И если хотя бы часть-гигантских ассигнований на термоядерные исследования уделить развитию нетрадиционной энергетики, страна, без сомнений, от этого только выиграет.
Непривычно слышать подобные высказывания от физика-атомщика.
Почему же? Я очень заинтересован в. развитии атомной энергетики. Но именно в развитии, а не в бездумном наращивании ее мощностей. Наращивании, при котором отметаются все сомнения, отрекаются любые исследования, не сулящие мгновенной выгоды.
Вопросы математического моделирования, радиационной биологии, роботизации и многие другие кому-то казались второстепенными. Действительно, лишних киловатт они не давали. Но без этих исследований чернобыльская трагедия становилась неминуемой — она приближалась...
В этой связи остановлюсь на близкой мне области — математическом моделировании. В принципе модели позволяют проигрывать самые разнообразные ситуации: от нормального режима работы реактора до маловероятной аварии. С их помощью можно предвидеть, как изменятся физические, химические, конструктивные характеристики «объекта. По сути дела, модели — самоё эффективное, а порой и единственное средство исследования любых аварийных процессов. Например, научно обоснованное размещение АЭС с учетом многообразных определяющих факторов (плотность населения, промышленная инфраструктура, природные условия и т. п.) возможно лишь при использовании корректного математического моделирования.
Мы уже научились достаточно надежно моделировать переходные процессы. И все, что нужно для разработки -хорошей системы автоматического регулирования, делаем хорошо. Но этого мало.

Необходимо столь же надежное математическое описание экстремальных аварийных ситуаций, связанных, скажем, с расплавлен кем активной зоны. Более того, нужны модели процессов, протекающих за пределами АЭС. Долгое время эта мысль не находила должной поддержки. Чернобыль убедил сомневающихся. Теперь начинают разворачиваться работы в данной области. Однако для успешного моделирования нужны быстродействующие ЭВМ, соответствующее оборудование, дорогостоящие Стенды — все то, чем наша 11 а у ч но-тех н и чес ка я база располагает сегодня в недостаточной степени. Кроме того, необходимо собрать и обработать огромный объем информации, провести теоретические исследования, разработать и осуществить сложные эксперименты.
С одной стороны, то, что делается, внушает надежды. С другой — вновь демонстрирует наши слабости. Одних инженерных решений мало. Нужны сильная научно-техническая база, принципиальные % прорывы во многих научных направлениях, нестандартные и смелые идеи.


<<<---
Мои сайты
Форма входа
Электроника
Невский Ювелирный Дом
Развлекательный
LiveInternet
Статистика

Онлайн всего: 5
Гостей: 5
Пользователей: 0